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and two different discretizations of Tµν . We do so by using lattice perturbation theory

and non-perturbative Monte-Carlo simulations. These correlators, which are functions of
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1 Introduction

Energy-momentum tensor (EMT) correlators in finite-temperature QCD provide a way to

study the spatial correlation of fluctuations in energy density, pressure and entropy [1].

They thus allow us to gain insight into the structure of the quark-gluon plasma (QGP),

thereby going beyond its thermodynamic properties. The time-dependent EMT correlators

are related to the transport properties of the QGP. Phenomenological upper bounds for

the shear viscosity to entropy density ratio, η/s < 5
4π (see [2] and refs. therein), are derived

by comparing hydrodynamic calculations of elliptic flow to heavy ion collision data. This

result suggests the picture of a strongly coupled plasma around 2Tc, where Tc is the QCD

crossover temperature. A significant effort is underway to constrain the transport proper-

ties of the gluonic sector non-perturbatively from first principles [3, 4], and given the high

computational cost of determining the EMT correlators in Monte-Carlo simulations, it is
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important to optimize the choice of lattice action and discretization of the EMT. This is

the subject of this paper.

The gluonic correlators have been computed at treelevel in the continuum [5]. Here

we compute the correlators at finite lattice spacing using the (anisotropic) Wilson pla-

quette action [6] and two discretizations of the EMT. The strategy is to determine the

kinematic regime where the treelevel discretization errors are below the 10% level. We

then expect treelevel improvement to further reduce the discretization errors to the few

percent level. This is a reasonable target, given the statistical accuracy being currently

achieved in lattice simulations [4].

The outline of this paper is as follows. In section 2 we give the definitions of the

lattice actions and discretizations of the EMT, and derive the treelevel formulas for the

two-point functions on the lattice. Section 3 is devoted to analyzing the treelevel cutoff

effects for various correlators. Section 4 describes how the treelevel discretization errors

can be removed from non-perturbative Monte-Carlo data, and in section 5 we discuss to

what extent treelevel improvement is successful. We end with some concluding remarks.

2 Definitions and master formulas

2.1 In the continuum

The continuum Euclidean energy-momentum tensor for SU(Nc) gauge theories reads

Tµν(x) = θµν(x) +
1

4
δµν θ(x) (2.1)

θµν(x) =
1

4
δµνF

a
ρσF

a
ρσ − F a

µαF
a
να (2.2)

θ(x) =
β(g)

2g
F a

ρσF
a
ρσ (2.3)

β(g) = −b0g
3 + . . . , b0 =

11Nc

3(4π)2
. (2.4)

We will study the dimensionless, finite-temperature T Euclidean correlators

Cµν,ρσ(x0,p) ≡ T−5

∫
d3x eip·x 〈Tµν(x0,x)Tρσ(0)〉 . (2.5)

Cµν,µν (no summation) will be sometimes abbreviated as Cµν , and Cθθ is the correlator of

the trace anomaly θ, normalized as in eq. (2.5). In the continuum, these correlators were

calculated to leading order in perturbation theory in [5]. The extent of the time direction

is denoted by L0 ≡ 1/T .

2.2 On the lattice

On the anisotropic lattice with spatial lattice spacing aσ and temporal lattice spacing aτ ,

the Wilson action reads

Sg =
∑

x

βσSσ(x) + βτSτ (x). (2.6)
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In numerical practice, it is convenient to parametrize these parameters as

βσ =
β

ξ0
βτ = βξ0. (2.7)

At treelevel, ξ0 = aσ/aτ . We use the notation

Sσ =
∑

k<l

Skl, Sτ =
∑

k

S0k , Sµν(x) = 1
Nc

ReTr {1 − Pµν(x)}, (2.8)

Pµν(x) = Uµ(x)Uν(x+ aµµ̂)Uµ(x+ aν ν̂)
−1Uν(x)

−1 . (2.9)

The lattice spacing in the four directions are denoted by aµ in order to maintain the

symmetry among different directions as long as possible. At the end of the calculation we

will set a1 = a2 = a3 = aσ and a0 = aτ . The vectors µ̂ are defined as unit vectors along the

lattice axes. We employ the summation convention for color indices, but not for space-time

indices. We use the standard notations

∂µf(x)=
1

aµ
(f(x+aµµ̂)−f(x)), ∂∗µf(x)=

1

aµ
(f(x)−f(x−aµµ̂)), ∂̃µ =

1

2
(∂µ+∂∗µ) ,

(2.10)

p̂µ =
2

aµ
sin

aµpµ

2
, ṗµ =

1

aµ
sin aµpµ, p̂2 =

3∑

µ=0

p̂2
µ . (2.11)

We introduce the perturbative fields Aµ(x) by

Uµ(x) = eg0aµAµ(x). (2.12)

Using an antihermitian set of generators normalized by Tr {T aT b} = − δab

2 , we define

Aµ(x) = Aa
µ(x)T a. The latter has the covariant-gauge propagator

〈Aa
µ(x)Ab

ν(y) 〉0 = δab

∫

B

d4p

(2π)4
ei(p(x−y)+ 1

2
aµpµ−

1
2
aνpν)

p̂2

{
δµν − (1 − λ−1

0 )
p̂µp̂ν

p̂2

}
. (2.13)

The expectation value 〈. . .〉0 is taken in the free theory. Here and in the following, 〈O1O2〉

(whether in the free theory or not) will always be understood to be the connected two-

point function. The Brillouin zone is B = ⊗µBµ with Bµ = [−π/aµ, π/aµ]. The lattice field

strength is defined by

Pµν(x) ≡ exp{g0aµaνFµν(x)}. (2.14)

To leading order, one has

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + O(g0). (2.15)

2.3 Clover discretization

We introduce Qµν(x) and F̂µν(x) as in [7],

Qµν(x) = Pµν(x) + Pµν(x− aµµ̂) + Pµν(x− aν ν̂) + Pµν(x− aµµ̂− aν ν̂), (2.16)

F̂µν(x) =
1

8aµaν
(Qµν(x) −Qνµ(x)). (2.17)
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We define F̂µν = g0F̂
a
µνT

a, implying for instance − 2
g2
0
Tr {F̂µν(x)F̂µν(x)} = F̂ a

µν(x)F̂ a
µν(x).

Then

F̂ a
µν(x) =

1

2

[
∂̃µ(Aa

ν(x) +Aa
ν(x− ν̂)) − ∂̃ν(Aa

µ(x) +Aa
µ(x− µ̂)) + O(g0)

]
.

Using Wick’s theorem, one finds1 (dA = N2
c − 1)

〈 F̂ a
µν(x)F̂ a

ρσ(x) F̂ b
αβ(y)F̂ b

γδ(y) 〉0

= dA

[
〈F̂µν(x)F̂αβ(y)〉0〈F̂ρσ(x)F̂γδ(y)〉0 + 〈F̂µν(x)F̂γδ(y)〉0〈F̂ρσ(x)F̂αβ(y)〉0

∣∣∣
U(1)

.

Then, in Feynman gauge λ0 = 1, we obtain

〈F̂µν(x)F̂αβ(y)〉 = dA φµναβ(x− y) , (2.18)

φµναβ(x) ≡ δνβf
ν
µα(x) + δµαf

µ
νβ(x) − δµβf

µ
να(x) − δναf

ν
µβ(x) , (2.19)

f ν
µα(x) ≡

∫

B

d4p

(2π)4
eipx

p̂2
cos2(pνaν/2) ṗα ṗµ . (2.20)

Finally,

〈F̂ a
µν(x)F̂ a

ρσ(x)F̂ b
αβ(y)F̂ b

γδ(y)〉0 =dA

[
φµναβ(x−y)φρσγδ(x−y)+φµνγδ(x−y)φρσαβ(x−y)

]
.

(2.21)

This correlator is gauge-invariant and therefore independent of λ0. To go over to mixed

propagators (which are functions of (x0,p)), we introduce the spatial Fourier transform of

φµναβ(x), φ̃µναβ(x0,p) = a3
σ

∑
x
φµναβ(x) eip·x. Then

a3
σ

∑

y

eiq·y 〈 F̂ a
µν(0)F̂ a

ρσ(0) F̂ b
αβ(x0,y)F̂ b

γδ(x0,y) 〉0 (2.22)

= dA

∫

Bσ

d3p

(2π)3

[
φ̃µναβ(x0,p)φ̃ρσγδ(x0,−(p + q)) + φ̃µνγδ(x0,p)φ̃ρσαβ(x0,−(p + q))

]
.

with Bσ = B1 × B2 × B3. Eq. (2.22) is the master formula from which we will derive all

results in section 2.

Explicitly, in the clover case,

φ̃µναβ(x0,p) =

∫

B0

dp0

2π

eip0x0

p̂2
0 + p̂2

× (2.23)

×
[
δνβ cos2(aνpν/2) ṗµ ṗα + δµα cos2(aµpµ/2) ṗν ṗβ

−δµβ cos2(aµpµ/2) ṗν ṗα − δνα cos2(aνpν/2) ṗµ ṗβ

]
.

1If O
a
i are linear combinations of the gauge fields, O

a
i = λi,αA

a
α, then by Wick’s theorem

X

a,b

〈(Oa
1O

a
2 ) (Ob

3O
b
4)〉0,conn =

X

a

〈Oa
1O

a
3 〉0〈O

a
2O

a
4 〉0 + 〈Oa

1O
a
4 〉0〈O

a
2O

a
3 〉0

= dA ( 〈O1O3〉〈O2O4〉 + 〈O1O4〉〈O2O3〉 )U(1).

The second equality follows from the fact that 〈Oa
1O

a
2 〉0 is independent of a and equal to the corresponding

correlation function in the U(1) gauge theory.
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At finite temperature, one is to replace the p0-integral in φ̃ by a Matsubara sum,

∫

B0

dp0

2π
→ T

∑

p0∈B0

, p0 = 2πnT, n ∈ Z. (2.24)

It is worth noting that the scalar propagator in the mixed (x0,p) representation can be

calculated explicitly, even at finite lattice spacing [8]:

1

L0

∑

p0∈B0

eip0x0

p̂2
0 + ω2

=
aτ

2

cosh(ω̂(1
2L0 − x0))

sinh(ω̂aτ ) sinh(1
2 ω̂L0)

,
2

aτ
sinh

(
ω̂aτ

2

)
= ω . (2.25)

2.4 Plaquette discretization

The gauge-invariant continuum operator [F a
µν(x)F a

µν(x)]cont can be discretized gauge in-

variantly as
4

g2
0a

2
µa

2
ν

Re Tr {1 − Pµν(x)} = F a
µν(x)F a

µν(x) + O(a2
µ,ν) , (2.26)

by the lattice field F a
µν(x), where Fµν(x) = F a

µν(x)T a. Then eq. (2.22) still applies if all

the F̂ are replaced by F ’s, provided f ν
µα(x) (see eq. (2.20)) is replaced by

f ν
µα(x) =

∫

B

d4p

(2π)4
eipx

p̂2
ei(aαpα−pµaµ)/2 ṗα ṗµ . (2.27)

3 Investigating cutoff effects

In this section we investigate the numerical size of cutoff effects for two different discretiza-

tion schemes of the energy momentum tensor correlators. The length of the temporal

direction is set equal to L0 = 1/T , where T is the temperature. There is no finite tem-

perature at which perturbation theory correctly describes finite-volume effects, since those

are related to magnetic screening, which is a non-perturbative effect. For that reason, the

spatial volume is kept infinite.

We use eq. (2.25) and perform the spatial momentum integral in eq. (2.22) by Gaussian

quadrature with a target relative accuracy of 10−4. We checked a sample of the results

against an extrapolation of the finite-volume momentum sums, and by comparing the latter

sums to Monte-Carlo data at very high β value.

3.1 Correlators of conserved charges

We start with the isotropic lattice. Figure 1 displays the treelevel lattice correlator of the

energy operator, a3
σ

∑
x
T00(x). The trace anomaly is formally O(αs) and does not play a

role at this leading order. Since in the continuum

C00,00(x0,0) =
1

T 5

∫
d3x 〈T00(x)T00(0)〉 =

cv
T 3

∀x0 6= 0, (3.1)

the departure of this correlator from a constant cv/T
3 = 4π2dA/15 is a measure of dis-

cretization errors. The discretization errors fall below the 10% level only for x0/a ≥ 5 for

– 5 –
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Figure 1. Top: the treelevel C00,00(x0,0) correlator correlator at finite lattice spacing on the

isotropic lattice. The horizontal line is the continuum treelevel prediction, 4π2/15. Bottom: the

treelevel C03,03(x0,0) correlator at finite lattice spacing on the isotropic lattice. The horizontal line

is the continuum trelevel prediction, 4π2/45.
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Nτ = 20. The reason for this large cutoff effect is that generically Cµν,ρσ(x0,p) fall off as

x−5
0 , and this singularity must cancel in the case of

∫
d3xT00(x). It is not surprising that

this large cancellation only takes place for x0 ≫ a, where time-translation is effectively

restored as a symmetry.

For the momentum density operator,

1

3

∑

k

C0k,0k(x0,0) =
1

3T 5

∑

k

∫
d3x 〈T0k(x)T0k(0)〉 =

s

T 3
∀x0 6= 0, (3.2)

the situation is significantly better (see figure 1, bottom panel), although the same cancel-

lation has to take place. At Nτ = 20, discretization errors are well below 10% for x0 ≥ 4a.

3.2 The tensor channel (ξ = 1)

In the continuum and infinite spatial volume limit, the following equality holds by rotational

invariance:

1

4

∫
d3x 〈(T11 − T22)(0) (T11 − T22)(x)〉 =

∫
d3x 〈T12(0)T12(x)〉 , ∀x0. (3.3)

In finite spatial volume, the two correlators differ even in the continuum. On the infinite

cubic lattice, discretizing either side of eq. (3.3) yields a correlator that approaches the

continuum limit with different O(a2) discretization errors. Figure 2 shows a comparison

of the discretization errors affecting these two schemes. With the clover discretization, at

a given value of Nτ , discretizing T12 yields smaller discretization errors than discretizing
1
2 (T11 − T22), for all values of x0.

With the plaquette discretization, eq. (2.26), one is only able to treat the diagonal

elements of Tµν , and in general it leads to significantly larger discretization errors than the

clover discretization. If E refers to the chromo-electric field and B to the magnetic field,

the EE and BB terms in the correlator are defined at integer values of x0/aτ , while the

EB term is defined at half-integer values of x0/aτ . For a function falling off as x−5
0 , with-

out a careful treatment this mismatch leads to large O(a2) cutoff effects. An appropriate

scheme [9] is to compute separately CBB , CEE at integer values of x0/a and CEB at half-

integer values. One can then obtain the two-point function of 1
2(T11−T22) by interpolation,

which is treated as part of the treelevel improvement scheme (to be discussed in section 4).

However, at treelevel, CEB vanishes at the midpoint x0 = L0/2, and CBB = CEE, so it is

straightforward to compare the plaquette discretization scheme to the others at that point.

As figure 2 shows, its cutoff effects are almost identical to those obtained with the clover

discretization of T12.

In all cases, Nτ ≥ 8 is necessary for the cutoff effects to be less than 10% and in the

O(a2) scaling region.

3.3 The scalar channel (ξ = 1)

We consider two ways to evaluate the zero-momentum two-point function of
∑

k Tkk on the

lattice. They differ, for large Nτ and x0/aτ , by O(a2) terms.

– 7 –
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Figure 2. Top: the relative deviation of the p = 0 tensor correlator at finite lattice spacing

from the continuum correlator. The �’s are for the clover discretization of T12 and the ⊗ for the

clover discretization of 1

2
(T11 − T22). The ∇ is the plaquette discretization. Bottom: the cutoff

effects on the a3

σ

∑
x
〈θ(0) θ(x)〉0 correlator with the clover and plaquette discretizations. Note that

Cθθ(Nτ )/Cθθ,cont = C00(Nτ )/C00,cont at x0 = L0/2. The entropy s(Nτ ) is computed with the

standard Wilson action and plaquette discretization of θ00 [10].
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1. The first way then consists in discretizing
∑

i,k Cii,kk directly. Using the notation

introduced earlier, one may rewrite it identically as

∑

i,k

∫
d3x 〈Tii(0)Tkk(x)〉=

∫
d3x

(
〈θ00(0) θ00(x)〉−

3

2
〈θ(0) θ00(x)〉+

9

16
〈θ(0) θ(x)〉

)
.

(3.4)

2. Alternatively one can exploit the conservation of energy to write

∑

i,k

Cii,kk(x0,0) =
6s− cv
T 3

+ Cθθ(x0,0) (x0 > 0). (3.5)

We have used the standard expressions for entropy and specific heat, s = ∂p
∂T and

cv = ∂e
∂T . Here one computes the trace-anomaly correlator in a given discretization,

and subtracts the thermodynamic function appearing on the right-hand side, either

at the same value of Nτ or already extrapolated to the continuum.

3.3.1 Asymptotic temperatures

At high temperatures, cv ∼ 3s and we have

6s− cv
T 3

=
4π2dA

15

[
1 −

5Nc

4

αs

π
+ O(α

3
2
s )

]
. (3.6)

In particular, this quantity is positive and straightforward to compute non-perturbatively.

Since the θ two-point function is formally O(α2
s), eq. (3.5) implies that the leading expres-

sion for Cii,kk is simply eq. (3.6), independent of x0. The correlators in the scalar channel

thus have a large x0-independent contribution. At high temperatures, the choice between

strategy (1.) and (2.) amounts to deciding which of T 2(6s − cv) or
∫
d3x〈θ00(0) θ00(x)〉0

has the smaller cutoff effects. We expect the former to be the better quantity, since the

latter correlator exhibits a contact term (as seen earlier), which spreads over a fixed num-

ber of lattice spacings. So provided the thermodynamic potentials are accurately known,

the second strategy is the superior one.

It remains to be seen how large the cutoff effects on
∫
d3x〈θ(0) θ(x)〉0 are. This is shown

on figure 5. For Nτ ≥ 8, they are comparable to the cutoff effects on the T12 two-point

function. Furthermore, they are not much larger than the cutoff effects on the entropy

computed with the standard Wilson plaquette action [10], also displayed on the figure.

In summary, the trace-anomaly two-point function is computationally advantageous in

that one is computing directly a quantity which is already O(α2
s).

3.3.2 Temperatures close to Tc

Although perturbative methods fail near Tc, we know that very close to Tc, the specific

heat cv becomes large (both in SU(3) gauge theory and full QCD), and 6s− cv is negative:

it cancels a large flat contribution in the trace-anomaly correlator [11]. In that regime, it

is therefore preferable to adopt the first strategy and compute
∑

i,k Cii,kk directly.

– 9 –
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3.4 Anisotropic lattice

We now turn to the case of an anisotropic lattice, ξ > 1. Indeed it has long been recognized

that such a lattice presents certain advantages for the calculation of thermodynamics [12]

and thermal correlation functions, in particular in charmonium calculations [13].

In order to find the optimal range of anisotropies, we consider the cutoff effects on the

tensor correlators at a fixed value of the spatial lattice spacing, aσ/L0 =fixed. We then

vary the anisotropy between 1 and 4. On figure 3, we see that the sign of the cutoff effects

changes for 1 < ξ < 2, and goes to a finite value in the Hamiltonian limit, ξ → ∞. It is

clearly seen that any choice ξ ≥ 2 reduces the cutoff effects significantly. It also appears

that choosing ξ > 3 does not reduce the cutoff effects further, presumably because they are

dominated by the coarseness of the spatial discretization. The cutoff effects appear to be

minimal near ξ = 2, and we make the choice to investigate ξ = 2 in the following. In fact,

as figure (3) shows, Nτ = 16 is about as good on the ξ = 2 lattice as on the isotropic lattice.

Because of the sign change of the cutoff effect, the smallness of the cutoff effect may be

partly accidental. However, we find that other correlators are also improved. For instance,

the discretization errors on the energy correlator, which are large on the isotropic lattice

(figure 1 bottom panel), are significantly (figure 3) reduced at ξ = 2. For Nτ = 20 on

the anisotropic lattice, the discretization error is below 10% for Tx0 ≥ 3
10 , which is not the

case on the Nτ = 10 isotropic lattice. We remark that even in the large ξ limit, the energy

correlator with the present discretization is not flat, in spite of continuous time-translation

invariance being restored in that limit.

3.5 Non-zero spatial momentum

For low momenta and frequencies, hydrodynamics predicts the functional form of the spec-

tral functions in the shear channel (ρ13,13) and the sound channel (ρ33,33) (see e.g. [14]). It

is therefore of interest to study also correlators with non-vanishing spatial momentum [15].

An example is shown on figure 4 for p = (0, 0, πT ). Here too the cutoff effects are smaller

for the momentum density correlator than for the energy density correlator. For instance,

at Nτ = 16, the cutoff effects are less than 5% for Tx0 ≥ 1
4 in the former case, while this

level of accuracy only occurs for Tx0 ≥ 3
8 in the latter case.

4 Treelevel improvement

Here we describe how the results obtained in this paper can be used to remove the dominant

part of the cutoff effects on the correlators. In the case of the clover discretization, we simply

divide by the treelevel lattice result, and multiply by the continuum result:

Clat(x0,p) → Clat(x0,p) ·
Ct.l.

cont(x0,p)

Ct.l.
lat (x0,p)

(4.1)

This technique is not new, see for instance [16].

For the plaquette discretization, the three electric-electric, magnetic-magnetic and

electric-magnetic contributions to C(x0) are computed separately. For each of tem, we
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Figure 3. Top: The cutoff effects on the tensor correlator for x0 = L0/4 and L0/2, corresponding

to small and large symbols respectively. The spatial lattice spacing aσ is held fixed, the temporal

lattice spacing aτ is varied between a quarter and one times aσ. The �’s refer to T12 and the ⊗’s to
1

2
(T11 −T22). In addition, the two crosses at ξ = 1 indicate the reduction of the cutoff effect on the

1

2
(T11 − T22) correlators when increasing L0/aσ from 8 to 16. Bottom: the treelevel C00,00(x0,0)

correlator on the anisotropic lattice, to be compared with figure 1.
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Figure 4. The ratio of lattice to continuum treelevel correlators for T00 (top) and T03 (bottom).

Clover discretization on the anisotropic lattice, for p = (0, 0, πT ).

apply the following technique [9] to remove the tree-level discretization errors, which is

adapted from static-potential studies [17]. Firstly, x̄0 is defined by the treelevel correlators

such that Ct.l.
cont(x̄0) = Ct.l.

lat (x0). The improved non-perturbative correlator C is defined

at a discrete set of points through C(x̄0) = C(x0), and then augmented to a continuous
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function C = α + γCt.l.
cont. The parameters α and γ are fixed by the condition C(x̄

(i)
0 ) =

α + γCt.l.
cont(x̄

(i)
0 ), i = 1, 2, where x̄

(1)
0 and x̄

(2)
0 correspond to two adjacent measurements.

The correlator is thus defined for all Euclidean times between x̄
(1)
0 and x̄

(2)
0 . The linear

combination of the electric-electric, magnetic-magnetic and electric-magnetic contributions

is finally obtained at a common value of Euclidan time. Derivatives can then also be

obtained from γ dn

dxn
0
Ct.l.

cont(x0).

It is clear from this discussion that it is simpler to have a site-centered definition of the

energy-momentum tensor, and this is the choice made for our large-scale calculation [4].

5 Non-perturbative study of cutoff effects

In this section we test how effective treelevel improvement is, by applying it to non-

perturbative data from Monte-Carlo simulations.

5.1 Isotropic lattice, plaquette discretization

We start with data obtained on isotropic lattices with the plaquette discretization. In the

scalar channel, the Cθθ correlator was obtained at several lattice spacings in [9]. Figure 5

displays the lattice spacing dependence of the Tx0 = 1
2 treelevel-improved tensor correlator

as a function of (aT )2 for two fixed temperatures. The aspect ratio of the lattice is LT = 5

at 1.65Tc and LT = 2.5 for 1.24Tc. The residual discretization errors appear to be small,

in fact consistent with zero for Nτ ≥ 8. However, a residual 10% cutoff effect cannot be

excluded at 1.65Tc, because the statistical errors are increasing with Nτ .

5.2 Anisotropic lattice (ξ = 2), clover discretization

Figure 5 displays the treelevel-improved correlators of the total energy and momentum on

a 16 × 483 lattice. As discussed in section 3.1, these correlators are x0-independent in the

continuum limit. In the case of the momentum T0k, the correlator is flat within statistical

errors down to Tx0 = 1
4 or 1

5 . Since this corresponds to x0/aσ = 1.5 and 2 respectively, we

regard this as an excellent outcome. By contrast, the unimproved correlator starts to rise

for x0/aτ larger by one unit.

In the case of the energy, the treelevel improvement imposes a much larger correction

to the data, and, not surprisingly, the expected flatness of the correlator is much less

well realized. The treelevel improvement undercorrects the correlator for Tx0 ≥ 1
4 , and

overcorrects it at short distances. We have to conclude that in this channel, only the largest

x0/aτ points are usable for a continuum extrapolation, even after treelevel improvement.

In particular, this strongly restricts the x0-information for finite-p correlators of the energy

density. The latter are particularly interesting [5], because they contain information on the

damping of sound waves in the plasma.

6 Concluding remarks

We have studied the discretization errors of the energy-momentum tensor correlators in

lattice gauge theory. We summarize the lessons learnt.
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Figure 5. Top: The cutoff effects on the 1

2
(T11 − T22) treelevel-improved two-point function from

Monte-Carlo simulations, for two temperatures, 1.65 and 1.24Tc. Here the plaquette discretization

is used on the isotropic lattice. Bottom: The treelevel-improved correlators C00,00 and
∑
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are displayed as open symbols.
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1. using a site-centered discretization of the EMT simplifies the calculation of correlators

and their treelevel improvement. Therefore in the following we discuss the ‘clover’

discretization.

2. the momentum density correlator has small cutoff effects at treelevel, and correspond-

ingly the treelevel-improved non-perturbative correlator has small cutoff effects down

to very small separations.

3. the energy density correlator is much more problematic with the chosen discretization.

The treelevel energy correlator is far from being flat for realistic values of Nτ , and cor-

respondingly after treelevel improvement cutoff effects as large as 50% remain. This

implies that only the largest values of x0 can be used in a continuum extrapolation.

4. the correlators of the spatial components of Tµν have moderate discretization errors

and treelevel improvement works well.

5. in all analyzed channels, the anisotropic lattice helps reduce the cutoff effects at a

lower cost than decreasing the lattice spacing on the isotropic lattice.

The present study suggests that the design of a lattice energy density operator which

leads to small cutoff effects in its two-point functions would be very valuable. Such a

discretization would also have an impact in other areas of QCD, for instance in hadron

structure calculations, where the glue energy density operator determines the glue momen-

tum fraction [18, 19]. It would be interesting to investigate the cutoff effects associated

with the HYP-smeared discretizations introduced in [19].

A further important issue on the anisotropic lattice is the proliferation of normalization

factors that have to be applied to different components of the energy-momentum tensor.

Their determination will be the subject of a separate publication.
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